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Abstract
A perturbation method is presented which can be applied to the description of a
wide range of physical problems that deal with dynamics of dipolarly coupled
spins in solids. The method is based on expansion of eA+B in a perturbation
series. As an example of the application of the method, the multiple-quantum
coherence dynamics in three- and four-spin clusters are considered. The
calculated 0Q and 2Q intensities versus the duration of the preparation period
give close agreement with exact results and simulations data. The exact
solutions for J0Q and J2Q coherences in four-spin systems are obtained.

PACS number: 76.20.+q

1. Introduction

Dipolar coupling spin dynamics is of great interest concerning the general problems of physics
of many bodies and nuclear magnetic resonance (NMR) [1, 2]. In solids, the evolution of a spin
system under the dipole–dipole interaction (DDI) involves many spins and leads to unsolvable
problems. Even the analysis using the numerical calculation becomes difficult because the
number of states N = 2n is growing exponentially with the increase of n. So in existing
theories, only macroscopic characteristics such as spin–spin relaxation times, the second and
the fourth moments of resonance lines were taken into account [1]. These difficulties are very
clearly displayed in multiple-quantum (MQ) spin dynamics. The MQ phenomena involve
various multiple-spin transitions between the Zeeman energy levels and form MQ coherence
at times t > ω−1

d , where ωd is the characteristic frequency of DDI [3]. The problem in
analytical description of MQ is that the different modes of coherence grow at different times,
with higher modes requiring longer excitation times than lower modes [4]. Hence, ωdt > 1
is not a small parameter, and, at first glance, perturbation theory methods cannot be used to
study MQ dynamics. Indeed, only simple exactly solvable models of the spin system such as
two and three dipolar coupling spin-1/2 [5, 6] or one-dimensional linear chain spin [7] system
were analysed theoretically. The last achievement in this direction is the model with identical
DDI coupling constant for all spin pairs [8, 9]. Note that the simplified calculations essential
for the case of identical DDI coupling constant have been already mentioned [10]. Such
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approaches cannot describe MQ processes except for zeroth and second-order coherences.
Thus, the development of a method that can successfully represent important features of MQ
dynamics with coherences larger than 0Q and 2Q is needed.

Importance of the analytical description of the MQ processes in solids is that involving the
excitation of collections of dipolar coupling spins can provide important structural as well as
the spin dynamics information. Moreover, during the past few years, the NMR is considered
as the best candidate [11–13] for experimental realization of quantum information processes.
Recently, by using MQ techniques a new method of preparing pseudopure states in a cluster
of dipolar-coupled nuclear spins was developed [14] and the dynamics of entanglement in
solids was investigated [6]. Thus, investigation of the quantum information processes with
MQ methods is of current interest.

We present a perturbation approach to the problem of dipolar coupling spin dynamics in
solids. DDI of all spins was divided into several groups that are characterized by the identical
DDI coupling constants. Since the magnitudes of the dipolar coupling constants vary inversely
with the cube of internuclear distance, the coupling constants are different for these groups.

Our main idea is to take into account in MQ NMR dynamics influence of the groups
with different degree of accuracy. Spin groups with smaller DDI coupling constants can be
considered as perturbation (spins located far apart) while the nearest neighbours are taken into
account exactly. As the result, we can develop a perturbation method that allows obtaining the
description of the MQ with a large coherence evolution under DDI in an analytical form. The
proposed approach will be a powerful method to describe wide ranges of physical problems
that deal with dynamics of dipolar coupled spins in solid. On one hand, this approach uses the
advantages of exactly solvable models [9, 15]. On the other hand, it simplifies calculations by
using a perturbation technique. Results will show that the perturbation method can be applied
to solve complex spin-dynamics problem and to obtain the solution in an analytical form. The
method is based on the differential method [16, 17] that expresses eA+B as an infinite product
of exponential operators [17]. In the case where the norm of operator B is small then one
of operator A, ‖B‖ < ‖A‖, we will try to obtain the perturbation series up to second-order
approximation (‖B‖/‖A‖). Then the problems in the description of the MQ dynamics will be
significantly simplified.

2. Theory

Let us consider a spin system with Hamiltonian, H which includes only two parts with different
DDI constants α and β: H = A + B, where A = αA and B = βB, α = ‖A‖ and β = ‖B‖
are the norms of operators A and B, respectively (α > β and [A,B] �= 0). The evolution of
the spin system is governed by propagator

e−itH = e−it (αA+βB). (1)

We seek to express (1) as a series such that

e−it (αA+βB) = e−itβBσ (t), (2)

where operator σ(t) obeys the differential equation [17, 18]

i
dσ(t)

dt
= αA(0)(t)σ (t), (3)

with initial condition

σ(0) = 1 (4)
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and A(0)(t) = e−itβBA eitβB . Assume that αt � 1 and βt < 1. First, we will restrict ourselves
by keeping only first-order terms that are linearly proportional to β. This leads to

i
dσ (0)(t)

dt
= α(A + itβ[B,A])σ (0)(t). (5)

Solving equation (5) we obtain

σ (0)(t) = e−iα(At+i t2

2 β[B,A]). (6)

However, equation (6) contains terms that are proportional to a power of β. Then we will
continue the expansion:

σ (0)(t) = eα t2

2 β[B,A]σ (1)(t). (7)

Differentiating expressions (7) results in the differential equation for σ (1)(t):

i
dσ (1)(t)

dt
= αA(1)(t)σ (1)(t) (8)

with initial condition σ (1)(0) = 1 and A(1)(t) = e−α t2

2 β[B,A]A e−α t2

2 β[B,A]. Solving equation (8)
and keeping only terms linearly in β, the following expression for the operator σ (1)(t) can be
obtained:

σ (1)(t) = e−i(αAt−α2 t3

6 β[[B,A],A]). (9)

Again, equation (9) contains terms that are not linear in β. Continuing a similar expansion
procedure, after the N steps we obtain

e−it (αA+βB) =

1 − β

N∑
n=0

αn (it)n+1

(n + 1)

n∑
j=0

(−1)j

j !(n − j)!
AjBAn−j


 e−i(αtA+ β

α

(itα)N+2

(N+2)! [B,A]N+1),

(10)

where [B,A]N+1 denotes the repeated commutators [[[. . . [[B,A], A] . . . A]N+1. After
summation over j in equation (10) we have

e−it (αA+βB) =
(

1 − β

α

N∑
n=0

(iαt)n+1

(n + 1)!
{B,An}

)
e−i(αtA+ β

α

(itα)N+2

(N+2)! {B,AN+2}), (11)

where

{B,A0} = B and {B,An+1} = [{B,An}, A]. (12)

In the limit as the number of steps N → ∞ we obtain that limN=∞
(

β

α

(itα)N+2

(N+2)!

) = 0.
Consequently, the exponent in (11) can be presented in the limit as N → ∞ in the following

form: limN=∞ e−i(αtA+ β

α

(itα)N+2

(N+2)! [B,A]N+1) = e−iαtA , which does not include any terms with B,
and the summing over n up to indefinite results in

e−it (αA+βB) =
(

1 − i
β

α

∫ αt

0
dx e−ixAB eixA

)
e−iαtA, (13)

which is a well-known formula for expansion of an exponential operator in a perturbation
series [18]. To obtain expansion containing only linear to β

α
terms we have to require that

β

α

(tα)N+2

(N+2)! � 1. This requirement also imposes restrictions on time: t � 1
α

(
α
β
(N + 2)!

) 1
N+2 . So
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for the smallest of times t � 1
α

(
α
β
(N + 2)!

) 1
N+2 or t � 1

β
, equation (10) includes only terms

linear in β. In an analogous way, we obtain the expansion up to second order in the ratio β

α
:

e−it (αA+βB) =
{

1 − β

α

∞∑
m=0

∞∑
k=0

[
(−1)m(ix)k+m+1

m!k!(k + m + 1)
AmBAk

+

(
β

α

)2 ∞∑
l=0

∞∑
p=0

(−1)m+p(ix)k+l+m+p+2

m!k!l!p!(l + p + 1)

Al+mBApBAk

(k + l + m + p + 2)

]}
e−ixA. (14)

The series expansion (14) can be used not only for the small parameter β

α
< 1, but also

independently, for the parameter x = αt . Formula (14) can be easily generalized for a case
where the exponential operator contains arbitrary number of the non-commutative operators
and can be extended to include various power of the operators. Equation (14) appears to be
complex at glance, but in fact it is quite simple to use, as the following examples will illustrate.

3. Results and Discussion

Let us consider a cluster of three dipolar-coupled spin- 1
2 nuclei. The MQ dynamics in the

rotating frame is described by propagator (1), where the time-independent average Hamiltonian
is given by

H = −1

2

∑
j<k

djk

(
I +
j I +

k + I−
j I−

k

)
(15)

and I +
j and I−

j are the raising and lowering operators for spin j respectively. The dipolar
coupling constant, djk , for any pair of nuclei j and k in the cluster, is given by

djk = γ 2h̄

2r3
jk

(1 − 3 cos θjk), (16)

where γ is the gyromagnetic ratio of the nuclei, rjk is the internuclear spacing and θjk is
the angle the vector �rjk makes with the external magnetic field. In the high-temperature
approximation, the density matrix at the end of the preparation period is given by

ρ(t) = e−iHt ρ(0) eiHt , (17)

where ρ(0) is the initial density matrix in the high-temperature approximation

ρ(0) =
3∑

j=1

I z
j , (18)

I z
j is the projection of the angular momentum operator on the direction of the external field

for a spin j . The average Hamiltonian (15) can be divided into three parts according to the
number of the different coupling constants d12 > d23 > d13:

H = H12 + H23 + H13, (19)

where

Hjk = −djk

2

(
I +
j I +

k + I−
j I−

k

)
with j �= k and j, k = 1, 2, 3. (20)

The experimentally observed values are the intensities, JnQ(t) of multiple-quantum
coherences:

JnQ(t) = 1

Trρ2(0)

∑
p,q

ρ2
pq(t) for n = mzp − mzq, (21)

where mzp and mzq are the eigenvalues of the initial density matrix (18). The perturbation
method described above is used to calculate the time evolution of MQ coherences. Using



Dipolar coupling spin dynamics: perturbation approach 8163

0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

J 0Q
(x

)

x= t

Figure 1. Time dependences (in units of 1
α

) of the normalized intensities of 0Q coherence
(solid-line is exact solution [5], dot-line is the calculation using equation (22) and dash-line is the
calculation using equation (24)).

expansion (14) with αA = H12 and βB = H23 + H13 and keeping terms up to eighth order in
x = αt , the normalized 0-quantum (J0Q) and 2-quantum (J2Q) intensities are given by

J0Q = 1 − 8x2

3
+

32x4

9
− 256x6

125
+

512x8

945
+

(
β

α

)2 (
8x2

3
+

40x4

9
− 176x6

45
+

1544x8

945

)
(22)

and

J2Q = −4x2

3
+

16x4

9
− 128x6

135
+

256x8

945
−

(
β

α

)2 (
4x2

3
+

32x4

9
− 128x6

45
+

1024x8

945

)
,

(23)

where
(

β

α

)2 = (
d23
d12

)2
+

(
d13
d12

)2
. Let us compare formulae (22) and (23) with results from

equation (14) in which the terms with x = αt will be taken into account exactly. By summing
over n,m, l and k up to infinity in (14), we obtain the analytical expressions of the intensities
of 0-quantum

J0Q = 1

3

{
cos 4x − 2

[(
β

α

)2

− 1

]
+ 2

(
β

α

)2

(cos x + cos 3x − cos 4x − x sin 4x)

}
(24)

and 2-quantum

J2Q = − sin 2x

3

{
2x

(
β

α

)2

cos 2x + 2

[(
β

α

)2

−
[(

β

α

)2

− 1

]
cos x

]
sin x

}
. (25)

Now let us compare intensities (22)–(25) with the exact solution [5]. Figures 1 and 2 show
the evolution of the normalized 0Q and 2Q coherences for three-spin cluster, where β

α
= 0.3

and at t = 0 the spin system is in thermal equilibrium (18). All approaches, perturbations
(equations (22)–(25)) and exact [5], give closed agreement up to x = 0.75 (in unit of 1

α
), both

for 0Q- and 2Q-coherences. The exact account of influence of the nearest neighbours gives
good agreements up to x = 2.

A second example we consider is a cluster consisting of four spins arranged in the corners
of a square in an external magnetic field perpendicular to the square plane. In this case, the
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Figure 2. Time dependences (in units of 1
α

) of the normalized intensities of 2Q coherence
(solid-line is exact solution [5], dot-line is the calculation using equation (23) and dash-line is the
calculation using equation (25)).

MQ spin dynamics is described by the average Hamiltonian

H = H1 + H2, (26)

with two different dipolar coupling constants D1 and D2 , where D1 and D2 are the dipolar
coupling constants between nearest neighbours and spins at opposite sites, respectively(

β

α
= D2

D1
= 1

2
√

2

)
where

H1 =
(

−D1

2

) 4∑
j=1

(
I +
j I +

j+1 + I−
j I−

j+1

) = αA (27)

and

H2 =
(

−D2

2

) 2∑
j=1

(
I +
j I +

j+2 + I−
j I−

j+2

) = βB. (28)

Using the expansion (14) up to eighth order in x = αt , the normalized 0-quantum (J0Q)

J0Q = 1 − 2x2 +
7

4
x4 − 13

18
x6 +

5

28
x8 −

(
β

α

)2 (
x2 − 13

6
x4 +

121

60
x6 − 599

630
x8

)
(29)

and 2-quantum (J2Q)

J2Q = −x2

4
+

x4

4
− 1

9
x6 +

1

35
x8 −

(
β

α

)2 (
x2

8
− x4

3
+

11x6

30
− 58x8

315

)
(30)

intensities can be determined. Formulae (29) and (30) will be compared with results from
equation (14) in which the terms describing interaction of the neighbour spins will be taken
into account exactly. By summation over n,m, l and k up to infinity in equation (14), we
obtain the analytical expressions of the intensities of 0-quantum

J0Q = 1

4

(
1 + sin2 2x + 2 sin2

√
2x

)
+

x2

8

(
β

α

)2
(

2 sin2 2x −
√

2

x
sin 2

√
2x

)
(31)

and 2-quantum

J2Q = −1

8

(
sin2 2x + 2 sin2

√
2x

)
+

x2

16

(
β

α

)2
(

2 sin2 2x −
√

2

x
sin 2

√
2x

)
(32)

coherences.
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Figure 3. Time dependences (in units of 1
α

) of the normalized intensities of 0Q coherence in
four-spin cluster. Solid-line is exact solution (equation (33), dot-line is the calculation using
equation (29), dash-line is the calculation using equation (31) and open circle is computer
simulations.
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IJ
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+J
-2
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Figure 4. Time dependences (in units of 1
α

) of the normalized intensities of 2Q coherence in
four-spin cluster. Solid-line is exact solution (equation (34), dot-line is the calculation using
equation (30), dash-line is the calculation using equation (32) and open circle is computer
simulations.

To control the perturbation results (29)–(32), we obtained the exact solution for J0Q

J0Q = 9

4
− 1

2
cos


2x

√
2 +

(
β

α

)2

 +

1

4
cos 4x cos

(
2x

β

α

)
− cos2

(
x

β

α

)
(33)

and for J2Q

J2Q = −3

4
+

1

4
cos


2x

√
2 +

(
β

α

)2

 +

1

4
sin2 2x cos

(
2x

β

α

)
+

1

2
cos2

(
x

β

α

)
(34)
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coherences and fulfilled the numerical analysis of the MQ dynamics. The exact solutions
(33) and (34) and computer simulation of the MQ coherences of four-spin cluster have been
obtained with a PC using the MATLAB package.

Figures 3 and 4 show that perturbation results (29) and (30) are in agreement with (31)
and (32) and the exact solutions (33) and (34) and with the simulation data one up to x = 1
(in unit of 1

α
). Calculations in which the interaction between the nearest neighbours is taken

into account exactly (equations (31) and (32)) are in close agreement with the exact solutions
(equations (33) and (34)) and simulation data up to x = 3.

4. Conclusion

In conclusion, a perturbation method was developed which is based on the expansion of
operator exponent in a perturbation series. Then the perturbation approach was applied to
the description of the MQ spin dynamics in solids. The analytical expressions for 0Q and
2Q dynamics in three- and four-spin clusters in solids were obtained. In the four-spin cluster
the exact solution was obtained. The calculated 0Q and 2Q intensities versus the duration
of the preparation period agree well with exact solutions for three- [5] and four-spin clusters
(equations (33) and (34)).

The developed method can be extended to include various power of the operators with
small norm and applied to the description of a wide range of physical problems that deal with
dynamics of dipolar coupling spins in solids. The results in an analytical form can be used to
extract from experimental data the dipolar constants and the molecular structure information.
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